Erfundene Nachrichten, verdrehte Fakten – Fake News verbreiten sich rasant im Netz und werden oft unbedacht geteilt, vor allem in den Sozialen Medien. Fraunhofer-Forscherinnen und -Forscher haben ein System entwickelt, das Social Media-Daten automatisiert auswertet und bewusst gestreute Falschmeldungen und Desinformationen gezielt herausfiltert. Das Tool nutzt dafür sowohl inhaltliche als auch Metadaten, wobei es die Klassifikation mit Machine Learning erworben hat und diese in Interaktion mit dem Nutzer während der Anwendung verbessert.

Um Fake News zu erkennen, bewertet
das Tool des Fraunhofer FKIE nicht nur
Texte, sondern bezieht auch Metadaten
in die Analyse ein.
Falschmeldungen werden zur Stimmungsmache oder Hetze gegen einzelne oder mehrere Personen genutzt. Sie sollen die öffentliche Meinung zu bestimmten aktuellen Themen beeinflussen und
manipulieren. Diese Fake News verbreiten sich rasant über das Internet, vor allem über Soziale Medien wie Facebook und Twitter. Sie zu identifizieren ist schwierig. Hier setzt ein Klassifikations-tool des Fraunhofer-Instituts für Kommunikation, Informationsverarbeitung und Ergonomie FKIE an. Es wertet Informationen aus Social Media-Beiträgen automatisiert aus. Das System erschließt große Datenmengen. Es bewertet nicht nur Texte, sondern bezieht auch Metadaten in die Analyse ein und bereitet die Ergebnisse grafisch auf. »Mit unserer Software fokussieren wir uns auf Twitter und Webseiten. In den Tweets werden die Links veröffentlicht, unter denen die eigentlichen Fake News zu finden sind. Die sozialen Medien liefern sozusagen den Trigger. Die eigentlichen Falschmeldungen finden sich häufig auf Webseiten, die denen von Nachrichtenagenturen nachempfunden und nur schwer von den Originalen zu unterscheiden sind. Oftmals liegen ihnen DPA-Meldungen zugrunde, die sprachlich verändert wurden«, erläutert Prof. Dr. Ulrich Schade, Wisssenschaftler am Fraunhofer FKIE, dessen Forschungsgruppe das Tool entwickelt hat. Im ersten Schritt bauen Schade und sein Team Bibliotheken mit seriösen Beispielbeiträgen auf sowie mit solchen Texten, die der Nutzer als Fake News klassifiziert. Mithilfe dieser Lernset wird das System trainiert. Um Falschmeldungen herauszufiltern, wenden die Forscherinnen und Forscher »Machine Learning«-Verfahren an, die automatisiert nach bestimmten Merkmalen in den Texten und den Metadaten suchen. Das können beispielsweise in einem politischen Kontext auf semantischer Ebene Formulierungen und Wortkombinationen sein, die sich weder im alltäglichen Sprachgebrauch noch in der journalistischen Berichterstattung finden wie »die aktuelle Bundeskanzlerin«.

“ class=“wp-image-4465″/>









